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ABSTRACT 
Contaminant releases in or near a building can lead to significant human exposures unless 
prompt response measures are taken.  However, selecting the proper response depends in part 
on knowing the source locations, the amounts released, and the dispersion characteristics of 
the pollutants.  We present an approach that estimates this information in real time.  It uses 
Bayesian statistics to interpret measurements from sensors placed in the building yielding best 
estimates and uncertainties for the release conditions, including the operating state of the 
building.  Because the method is fast, it continuously updates the estimates as measurements 
stream in from the sensors.  We show preliminary results for characterizing a gas release in a 
three-floor, multi-room building at the Dugway Proving Grounds, Utah, USA. 
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INTRODUCTION 
Effective response to unexpected pollutant releases in buildings often requires knowing the 
source locations, the amounts released, and the duration of the event.  However, merely 
measuring airborne pollutant concentrations using sensors may not reveal this information.  
Complex airflows typically found in multi-room, multi-floor buildings will often quickly 
disperse the pollutant throughout the building, leaving insufficient time for the sensors to 
adequately sample the temporal and spatial profiles of the event.  Therefore, sensor 
measurements must first be interpreted.  Moreover, they must be interpreted quickly and 
continuously as the measurements stream in from the sensors. 
 
Traditional data interpretation algorithms, like optimization, Gibbs sampling, and Kalman 
filtering, are inadequate for this task.  They rely either on simplifying assumptions that are not 
often met in many indoor pollutant transport systems, or on time-consuming inverse models, 
which must repeatedly run computationally-intensive fate and transport models after an event 
has begun (Sohn et al., 2002). 
 
We present an alternative algorithm which uses Bayesian statistics.  Our approach succeeds, 
where traditional methods fail, because it decouples the simulation of predictive fate and 
transport models from the interpretation of measurements.  Time-consuming airflow and 
pollutant transport predictions and uncertainty estimates are computed prior to a pollutant 
release.  This allows for rapid data interpretation during an event.  The technique may be used 
to estimate the location, magnitude, and duration of the release, to characterize any unknown 
or variable building or weather conditions, and to predict future pollutant transport in the 
building.  Though Bayesian statistics have been applied to several environmental fields (see 
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Sohn et al. 2002 for a list of recent applications), using it to decouple indoor airflow and 
transport modeling from data interpretation has, to our knowledge, not been previously 
reported in the literature. 
 
The objectives of this paper are thus to (1) present our Bayesian approach for interpreting 
sensor data in real time, and (2) demonstrate the approach by successfully detecting and 
characterizing a pollutant release in a real multi-floor building. 
 
APPROACH 
The Bayesian data interpretation approach is divided into two stages.  First, in the pre-event 
or simulation stage, all of the time-consuming tasks associated with data interpretation are 
completed before a pollutant release occurs.  A model of the building's indoor airflow and 
pollutant transport is developed, and input parameters for the model are selected.  Any 
unknown or variable model input, like the location and duration of the pollutant, or the 
HVAC operating mode, is assigned an uncertainty distribution that describes the probabilistic 
range of possible values.  Generally, wide distributions are assigned given the limited prior 
information.  Next the user generates a library of model realizations by sampling the space of 
the model parameters using Monte Carlo, or other sampling technique, and predicting airflow 
and pollutant transport for each set of parameters.  Each model realization and model 
simulation represents a possible building operating condition and pollutant release scenario.  
Thus, sufficient sampling of the uncertainty distributions is essential to represent the full 
range of possible building and pollutant release conditions.  The resulting library of 
simulations may consist of several thousand scenarios. 
 
The second stage of the Bayesian approach, data interpretation, takes place during a release 
event.  The algorithm compares data streaming in from sensors to the library of pollutant 
transport predictions using a structured probabilistic method referred to as Bayesian updating 
(Brand and Small, 1995 and Sohn et al. 2002).  Bayes' rule allows us to quickly estimate, and 
update, the level of agreement between model predictions and the observed data while 
accounting for the effects of error in the measurements, correlation or averaging of the spatial 
and temporal data, and any imperfect model representation.  See Sohn et al. (2002) for a full 
description of the technique.  To summarize the process, each realization in the library is 
compared to the data to assess the likelihood that the realization describes the event in 
progress.  A realization with predictions that fit the sensor data well will have a high 
likelihood estimate.  This in turn suggests that the model inputs used to generate that 
realization in the pre-event simulation stage has high probability of describing the event in 
progress.  Comparing the relative fits for each realization using Bayesian statistics allows us 
to estimate the best-fitting suite of model inputs and the associated uncertainty. 
 
This second stage of the approach is mathematically simple and can be executed very quickly, 
much quicker than the rate at which new data will likely arrive from sensors.  As long as the 
original library of simulations provides adequate coverage of the model and input parameter 
space, the data interpretation during the event can be conducted without further evaluation of 
the flow and transport models. 
 
APPLICATION 
We applied our approach to locate and characterize a pollutant release in a three-floor, multi-
room building at the Dugway Proving Grounds, UT.  Figure 1 illustrates the building and 
shows the floorplan of the first floor.  The first and second floors each consist of three rooms 



and a stairwell landing.  The third floor consists of a large attic space and a stairwell landing.  
An air handling unit (AHU) supplies air to the first and second floors and returns air only 
from the first floor.  Researchers from Lawrence Berkeley National Laboratory (LBNL) 
conducted extensive blower door tests on the building to determine interzonal flow 
parameters and leakage rates.  They also conducted twelve tracer experiments in the building 
releasing puffs of propylene gas at various release points and under several operating 
conditions of the AHU.  Details of the experimental design were discussed by Sextro et al. 
(1999). 
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Figure 1: The three-floor building and plan view of the first floor with air handling unit. 
 
 
Table 1.  Uncertainty in the source and building characteristics. 
 

Parameter Range 
Source Location 10 locations, consisting of any of the rooms and 

stairwell.  Each location is assumed to be equally 
likely. 

Source Duration 1 sec to 5 min.  Log-uniform distribution. 
Source Amount 10 to 100 grams.  Log-uniform distribution. 
Status of Door Positions 3 scenarios, all equally likely: (1) all interior doors 

open, (2) all interior doors closed, (3) stairwell 
doors closed, all others open. 

 
 
In the simulation stage of the Bayesian approach, we hypothesized about the types of 
pollutant releases that might occur in the building, and assigned uncertainty ranges to the 
release characteristics (Table 1).  We then generated a library of five thousand airflow and 
pollutant release scenarios by sampling the uncertainty ranges using Latin Hypercube 
sampling techniques.  Airflow and pollutant concentrations in air were predicted for each 
scenario using the COMIS model, which had been validated previously with experiments 
conducted in this building (Sextro et al. 1999). 
 
In the data interpretation stage, sensors would be placed at various locations in the building to 
measure airborne concentrations.  The sensors would report the measurements in real-time to 
the monitoring computer, where they would be interpreted by the algorithm.  In the actual 
experiments conducted at Dugway, propylene detectors were placed in every room and at 
each stair landing, for a total of eleven sensors.  Concentration data were recorded 



continuously at 20 second intervals.  A sample of the data from one of the experiments is 
shown in Figure 2 at three locations within the building for the first ten minutes of the 
experiment.  In order to test our algorithm, we used data from this experiment, which 
consisted of a release of ~20 grams of propylene gas into the HVAC return intake in room 
1.2a with the HVAC operating.  To ensure that our test was valid, we ‘blinded’ our 
interpretation algorithm to the actual location and release conditions (see Table 1).  The 
interpretation method was applied for an unknown source location, just as would be the case 
for a potential release in a real building.  For our simulated exercise, we assumed that each 
data point was reported to the monitoring computer – in this case essentially simultaneously, 
though the reporting could be asynchronous. 
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Figure 2: Sensor measurements in room 1.2a (first floor), the stairwell landing on the second 
floor, and the attic (third floor).  Twenty grams of propylene were released in room 1.2a in 
one second. 
 
Based on the data from all eleven sensors, the interpretation algorithm reports estimates for all 
of the unknown model inputs, which are updated every 20 seconds.  Figures 3a and 3b show 
the source location probability for two different rooms.  It should be noted that at time t=0, 
the probability of the source location is equal for each room.  As can be seen in Figures 3a 
and 3b, the interpretation algorithm takes less than two minutes to identify the source location 
(room 1.2a) with high probability. 
 
Since sensors were placed in each room, one might conclude that the location with the highest 
concentration would always be the release location  However, that is correct only when the air 
is sampled when the source is on and releasing at a constant rate.  In this experiment, the 
release lasted for only one second and the sensors first sampled nineteen seconds after the 
source stopped.  The estimation is further complicated by the AHU quickly dispersing the 
pollutant throughout the building. 
 
As an example of updating other uncertain model input parameters, Figure 4 shows the 
algorithm's estimate of the total mass released as it refines that estimate every 20 seconds.  
The median estimate quickly converges on the correct amount released and uncertainty 
gradually narrows with each sampling interval.  Similar results were found for the other 
unknowns identified in Table 1, but are not shown. 
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Figure 3: Estimates of the probability that the source is located in room (a) 1.2a and (b) 2.2.  
At t=0 seconds (before data interpretation begins), the source is assumed be in any of the ten 
locations with equal probability (i.e., probability = 1/10). 
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Figure 4: Estimates of the total amount released.  At t=0 seconds (before data interpretation 
begins), the estimate is based on the initial uncertainty defined in Table 1.  The solid circle 
and uncertainty range represent the median and 90 percent confidence interval, respectively, 
and the horizontal line denotes the actual amount released. 
 
CONCLUSION AND IMPLICATIONS 
This paper presents a Bayesian approach for interpreting sensor measurements in real time.  It 
differs from other model parameter estimation methods by decoupling the simulation of 
airflow and pollutant transport from the interpretation of measurements.  This allows us to 
divide the data interpretation into two parts.  The simulation stage completes all of the time 
consuming tasks, such as development of airflow and pollutant transport models, uncertainty 
characterization, and simulation of pollutant transport, and compiles the scenario simulations 
into a library of results.  The data interpretation stage quickly accesses this library as data 
stream in during an event. 
 
We demonstrated the approach by analyzing a gas release in a three-floor building.  While the 
results are preliminary, they illustrate how our approach can quickly interpret data.  The 



approach quickly and correctly identified the source location and the release amount.  Though 
not illustrated here, the algorithm also correctly identified, in less than two minutes, both the 
duration of the tracer gas release and whether doors were open or closed.  Lastly, it correctly 
predicted the future dispersion of the pollutant in the building. 
 
In future work, we will use our approach to guide sensor deployment.  Decoupling data 
interpretation from model evaluation allows us to compare the performance of many 
hypothetical sensor operating conditions and sensor locations.  Such comparisons could help 
identify the requirements for a sensor network, including the number, sensitivity, and 
response time of sensors, based on the desired performance of a data interpretation algorithm 
in any given building. 
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